
Cyborg: Software for Max-Product Belief
Propagation in High Order Factor Graphs

Danny Tarlow <dtarlow@cs.toronto.edu>

(with Inmar Givoni and Richard Zemel)

Last Updated: May 14, 2010

Abstract

There is a growing interest in building probabilistic models with high order
potentials (HOPs), or interactions, over discrete variables. Message passing
inference in such models generally takes time exponential in the size of
the interaction, but in some cases, exact message updates for (generally
approximate) max-product belief propagation can be computed much more
efficiently.

This is documentation accompanying C++ code implementing the high
order factors described in HOP-MAP: Efficient Message Passing with High
Order Potentials (Tarlow, Givoni, & Zemel, 2010).

1 OVERVIEW

Max-product belief propagation (MPBP) is a general MAP inference routine that can be
applied to arbitrary low-order and some high-order graphical models. Here, we focus on
tractable instances of high order potentials (HOPs), providing efficient message computation
routines as described in Tarlow et al. (2010). As in Tarlow et al. (2010), we work with a
factor graph representation and exclusively use scalar messages and binary variables. To
represent multinomial variables, we apply a basic transformation where one binary variable
is created per state of the multinomial variable, and a one-of-N constraint is added over all
states.

We call our software Cyborg, in reference to the fact that parts of the code use stan-
dard message passing routines, but a large part of the high order factor calculations use
special-purpose combinatorial algorithms. Cyborg is written in object-oriented C++. The
asymptotic runtime of high order message computations are optimized; we use the best
known algorithms for each factor. However, we do not heavily optimize computation at a
lower level. There are two primary goals for this software:

1. Be general. Allow a wide variety of models to be used without requiring new message
derivations or new code (other than code to construct the model) to be written.

2. Be easily extensible. It should be easy to implement a new class of Factor and use
it in combination with other factors.

A secondary goal is to make the code straightforward to understand, so that it is possible
for a beginner to look through the code and understand how it works.

2 INSTALLATION AND RUNNING

2.1 Installation

Cyborg has only one external dependency, which is boost::program_options, which is
often installed by default. If it is not installed, however, you will need to install it. Files for
the full boost library are here:
http://sourceforge.net/projects/boost/files/boost/1.38.0/

After installing boost::program_options, make sure that LDFLAGS and CCFLAGS in the
Makefile are set to properly reference the installation location. You may need to add this
directory to your LD_LIBRARY_PATH.

Alternatively, see the Appendix for more detailed instructions on installing boost. Versions
1.38, 1.40, and 1.43 have been used successfully.

Afterwards, it should be sufficient to run make from within the Cyborg directory.

2.2 Running the Example

If all went well, you should be able to run ./cyborg to call the example program. The
example program uses a grid of binary variables of size idim by jdim. Outputs should look
roughly as follows, where “X” represents a variable taking value 1, and “.” represents a
variable taking value 0:

...

...
XX...
XXXXXXXX...
XXXXXXXX...
XXXXXXXXXX...
XXXXXXXXXXXXXX...
XXXXXXXXXXXXX...........XXXXXX...
XXXXXXXXXXX.............XXXXXX...........XXXXXXXXX.........................
XXXXXXXXXX.............XXXXXXX...........XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXX............XXXXXXXX.............XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
..XXXX.XX..........XXXXXXXXXXXXXXXXXXX.....................XXXXXXXXXXXXXXXX
.................XXXXXXXXXXXXXXXXXXXXX......................XXXXXXXXXXXXXXX
................XXXXXXXXXXXXXXXXXXXXXXXX....................XXXXXXXXXXXXXXX
.................XXXXXXXXXXXXXXXXXXXXXXX...................................
......................XXXXXXXXXXXXXXXXXX...................................
........................XXXXXXXXXXXXXXXX...................................
................................XXXXXXXX...................................
.................................XXXXXXXX..................................
...
377 / 1500 (25.1333%) variables on

The following potentials are included, depending on command line arguments:

2.2.1 Unary Potentials

Each variable is assigned a random potential sampled uniformly at random in the range
[−1, 1]. Positive potentials encourage a variable to take on value 1 (or label “X” in the
visualization). Negative potentials encourage a variable to take on value 0 (or label “.” in
the visualization).

2.2.2 Pairwise Potentials

(Control with --use_pairwise 1 and --pairwise_strength <strength>)

Along each row, attractive pairwise potentials are added between left-right neighboring
variables. There are no pairwise connections between above-below neighboring variables.

The strength of an individual potential is sampled uniformly at random in the range
[0, strength]. The potential encourages neighboring pixels to both take on label 1 and
gives value 0 for all other settings of the pair.

2.2.3 Cardinality Potential (Count Potential)

(Control with --use_counts 1, --counts_strength <strength>, and
--fraction_on <fractionOn>)

A count potential is added that softly encourages fractionOn of the variables to take on
label 1. The potential is of the form:

θcount(h) = −strength · (idim · jdim · fractionOn −
∑

hi∈H

hi)2,

which penalizes the squared distance from the target number of pixels on.

2.2.4 Convexity Potential

(Control with --use_convexity 1)

Constrain each column to form a 1D convex set. That is, disallow all configurations where
the variables in position hi,j1 = 1, hi,j3 = 1, hi,j2 = 0, and j1 < j2 < j3.

2.2.5 All Options

Importantly, any combination of these potentials can be used together. Try playing around
with different combinations of active potentials and different relative strengths of each type
of potential.

Run ./cyborg --help to see all available options:

Allowed options:
--help produce help message
--idim arg (=20) size in i dimension
--jdim arg (=180) size in j dimension
--damping arg (=0.75) damping factor. higher damping means use less

of new message.
--iterations arg (=100) maximum number of iterations
--seed arg (=1) random seed. use -1 for srand(time(NULL))
--schedule arg (=0) message schedule: 0 - SYNCHRONOUS
--use_counts arg (=1) use a counts factor in the model
--counts_strength arg (=10) how much to scale penalty for deviating from

desired count
--fraction_on arg (=0.75) expected fraction of pixels that are ’on’
--use_convexity arg (=0) use a convexity factor in the model
--use_pairwise arg (=1) use pairwise factors between horizontally

connected variables
--pairwise_strength arg (=1) strength of potential between neighbors (positiv

e, higher is stronger)

2.3 Examples to Try

Start with the simplest possible call, which uses only singleton potentials:

./cyborg --use_pairwise 0 --use_counts 0 --use_convexity 0

Now try adding pairwise potentials:

./cyborg --use_pairwise 1 --pairwise_strength 1 --use_counts 0 --use_convexity 0

Then stronger pairwise potentials:

./cyborg --use_pairwise 1 --pairwise_strength 10 --use_counts 0 --use_convexity 0

Then even stronger pairwise potentials:

./cyborg --use_pairwise 1 --pairwise_strength 100 --use_counts 0 --use_convexity 0

Keep the pairwise potentials and try adding a cardinality potential that encourages only
10% of the variables to be on (some of the arguments above were unnecessary and are set
by default, so we drop them from here on):

./cyborg --pairwise_strength 10 --fraction_on .1

Try encouraging 90% of the pixels to be on instead:

./cyborg --pairwise_strength 10 --fraction_on .9

Finally, add in convexity constraints to each column:

./cyborg --pairwise_strength 10 --fraction_on .25 --use_convexity 1

This exercises the main functionality of the example. Feel free to experiment with other
combinations of potentials and other relative potential strengths.

3 CONSTRUCTING AND USING FACTOR GRAPHS

To go beyond the example, you must programmatically construct new factor graph models.
This section describes the essential components.

The outer BinaryFactorGraph class manages the connectivity between Factor instances
and BinaryVariable instances. Its main storage includes variables, factors, and edges:

vector<BinaryVariable *> *variables_;
vector<Factor *> *factors_;
vector<Edge *> *edges_;

The BinaryFactorGraph constructor takes no arguments:

BinaryFactorGraph *fg = new BinaryFactorGraph();

3.1 Adding Variables

To create variables for use in the factor graph, there are two choices:

1. Create a BinaryVariable using var = new BinaryVariable(string name) con-
structor, then call BinaryFactorGraph::AddVariable(var):

BinaryVariable *var = new BinaryVariable("x");
fg->AddVariable(var);

2. Create an arbitrary dimensional “grid” of variables, and automatically add it to fg:

vector<uint> dim(2);
dim[0] = 100;
dim[1] = 100;
fg->AddVariableGrid("foreground", dim);

Variables can then be retrieved using the layer name and an index of the proper
dimension:

BinaryVariable *var = fg->GetVariableByGrid("foreground", index);

3.2 Adding Factors

To add factors to the factor graph, first add all variables in its scope to the factor. Suppose
we have the variable grid as above and want to define a cardinality HOP over all variables
in the grid:

CountsFactor *counts_factor = new CountsFactor("counts_factor_1");
vector<int> index(2);
for (int i = 0; i < 100; i++) {

for (int j = 0; j < 100; j++) {
index[0] = i;
index[1] = j;
BinaryVariable *var = fg->GetVariableByGrid("foreground", index);

counts_factor->AddToScope(var);
}

}

Next, define the potential using the factor’s type-specific construction. For example, a
CountsFactor needs a potential representation that assigns a log likelihood to each possible
number of variables in its scope that are on. For example, one way to softly encourage half
of the variables in the layer to be on would be to define the potential as follows:

vector<double> potential(100 * 100 + 1);
for (int i = 0; i <= 100 * 100; i++) {

potential[i] = 100 * 100 / 2 - abs(i - 100 * 100 / 2);
}
counts_factor->SetPotential(potential);

(The factor will copy the entries, so potential can be deallocated at this point.)

In addition, we usually want to assign singleton potentials to each variable:

vector<int> index(2);
for (int i = 0; i < 100; i++) {

for (int j = 0; j < 100; j++) {
string factor_name = StringPrintf("s_%d_%d", i, j);
SingletonFactor *s_ij = new SingletonFactor(factor_name);

index[0] = i;
index[1] = j;
BinaryVariable *var = fg->GetVariableByGrid("foreground", index);

s_ij->AddToScope(var);
s_ij->SetPotential((i + j) % 2 == 0 ? 1: -1);

fg->AddFactor(s_ij);
}

}

Finally, the factor must be added to the factor graph:

fg->AddFactor(counts_factor);

3.3 Belief Propagation

A BinaryBeliefPropagation object takes as input a BinaryFactorGraph object. In the
current implementation, only one BinaryBeliefPropagation object may be built for each
BinaryFactorGraph. The following snippet can be used as the most basic way to construct
a BinaryBeliefPropagation object, run inference, and decode beliefs:

BinaryBeliefPropagation *bp = new BinaryBeliefPropagation(fg);

bp->InitMessagePassing();
for (int it = 0; it < NUM_ITERATIONS; it++) {

bp->PassMessages();
}

bp->AssignVariablesByBeliefs();
cout << "Likelihood:" << fg->Likelihood() << endl;

To access individual variable beliefs and assignments:

BinaryVariable *var = fg->GetVariableByGrid("foreground", index);
cout << var->Name() << " belief: " << var->Belief()

<< "(" << var->Assignment() << ")" << endl;

4 IMPLEMENTING NEW FACTORS

4.1 Factors

The Factor class is the core of the message passing implementation. All factors (both low-
and high-order) subclass the base Factor class. The important instance variables that a
Factor maintains are:

vector<BinaryVariable *> *scope_;
vector<double> *incoming_messages_;
vector<double> *outgoing_messages_;
vector<Edges *> *edges_;

Internally, each factor operates on input incoming_messages_ and writes to
outgoing_messages_, where the incoming (or outgoing) message at index i is the mes-
sage incoming from (or outgoing to) the variable stored in scope_->at(i).

Messages stored in outgoing_messages_ are not immediately visible to the rest of the
network. There is an intermediate storage object of class Edge between each variable and
each factor, which stores to_variable_ and to_factor_ messages, which are visible to the
rest of the network.

In order to pass a message, UpdateOutgoingMessage(int position_in_factor) must be
called. This will copy a message from outgoing_messages_->at(position_in_factor)
to edges_->at(position_in_factor).to_variable_. This somewhat redundant
storage is an intentional design decision, which makes it easier to implement ad-
vanced message schedules and to cache previous factor computation results. Sim-
ilarly, to move a message from edges_->at(position_in_factor).to_factor_
to incoming_messages_->at(position_in_factor), we call
UpdateIncomingMessage(position_in_factor).

4.2 Subclassing Factors

Each Factor subclass must implement the following methods:

void ComputeAllOutgoingMessages();
double Likelihood();

Importantly, any algorithm can be used to compute these messages, and factors persist
throughout an execution of message passing, so they can cache results from previous message
computations.

References

Tarlow, D., Givoni, I., & Zemel, R. (2010). HOP-MAP: Efficient message passing for high
order potentials. In Artificial Intelligence and Statistics (AISTATS).

Appendix: Installing Boost

Thanks to Nikola Karamanov for the following:

--Download
boost_1_43_0.tar.bz2 from
http://sourceforge.net/project/showfiles.php?group_id=7586&package_id=8041

--Extract boost_1_43_0.tar.bz2
You will have a boost_1_43_0 directory somewhere

--cd to the boost_1_43_0 directory and run
./bootstrap.sh
./bjam

--cd to cyborg_public directory

--In Makefile after EXTRA_INCLUDES you should have:
BOOST = <path/to/boost_1_43_0>
CCFLAGS = -g -Wall -Werror -Wno-deprecated -I $(BOOST)
LDFLAGS = -lm -L$(BOOST)/stage/lib/ -lboost_program_options

--In the shell run (command is on one line):
setenv LD_LIBRARY_PATH <path/to/boost_1_43_0>/stage/lib/:$LD_LIBRARY_PATH

(OR if LD_LIBRARY_PATH is undefined leave out the ":$LD_LIBRARY_PATH")

--Now the command ./cyborg should work (you’ll need to run the previous
command every time so consider putting it in a script).

